If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+2t=8
We move all terms to the left:
t^2+2t-(8)=0
a = 1; b = 2; c = -8;
Δ = b2-4ac
Δ = 22-4·1·(-8)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-6}{2*1}=\frac{-8}{2} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+6}{2*1}=\frac{4}{2} =2 $
| 58-(3x+10)=3 | | |–3x–6|=18 | | (5r)(-2);=-3 | | 48+x+15=180 | | 2+7y=5 | | (5y+9)+40=180 | | 5(7x-3)=24(2x-2) | | 6x-10+x=39 | | 26+x+11=180 | | (5y+2)+48=180 | | 2x+2+4=2x+15 | | 5a=9=2a-3 | | 5d(4);=-2 | | 9x-10+4x+8=180 | | -7x+8=-3x+4 | | 46=2(3+x+x) | | 2x+1x3/5=2x-5 | | 7r+9r=128 | | -24+12d=2d-16 | | 3z+9(3+z)+3=4(5+z)+6-4Z | | 4y+(3y+11)+69=180 | | 3(6a);=3 | | 8−9z=-10z | | 4v+5=-23 | | -5+w=17 | | 13u-8u-u+3u=14 | | 2=7x+9 | | 5+3s=2s | | 8(2x-3)=15x+9 | | 48x-13=3x-64+48x | | 57=2x+17 | | -18x-30-3x=180 |